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ABSTRACT

This paper discusses the nonholonomic mechanical structure of space robots and its path planning. The

angular momentum conservation works as a nonholonomic constraint while the linear momentum conservation
is a holonomic one. Taking this in to account, a vehicle with a 6 d.o.f, manipulator is described as a 9 variable

system with 6 inputs. This fact implies the possibility to control the vehicle orientation as well as the joint
variables of the manipulator by actuating the joint variables only if the trajectory is carefully planned, although
both of them cannot be controlled independently. It means that assuming feasible-path planning a system that

consists of a vehicle and a 6 d.o.f, manipulator can be utilized as 9 d.o.f system. In this paper, first, the

nonholonomic mechanical structure of space vehicle/manipulator system is shown. Second, a path planning

scheme for nonholonomic systems is proposed using Lyapunov functions.

1. INTRODUCTION

The control of space vehicle/manipulator system possesses inherent issues that have not been considered

for on-the-earth robot manipulators, such as the micro gravity, momentum conservation, and preciousness of

energy. The kinematics and dynamics of space vehicle/manipulator systems have recently been studied by

various researchers.

Alexander and Cannon [1] assumed concurrent use of the thrust force of vehicle and the manipulator joint

torque, and proposed a control scheme taking account of the effect of the thrust force in computing the joint

torque of manipulator. Dobowsky and Vafa [2] and Vafa [3] proposed a novel concept to simplify the kinematics
and dynamics of space vehicle/manipulator system. A virtual manipulator is an imaginary manipulator that

has similar kinematic and dynamic structure to the real vehicle/manipulator system but fixed at the total center

of mass of the system. By solving the motion of the virtual manipulator for the desired motion of endeffector,
the motion of vehicle/manipulator system is obtained straightforwardly. On the other hand, Umetani and

Yoshida [4] reported a method to continuously control the motion of endeffector without actively controlling
the vehicle. The momentum conservations for linear and angular motion are explicitly represented and used

as the constraint equations to eliminate dependent variables and obtain the generalized Jacobian matrix that

relates the joint motion and the endeffector motion. Longman, Lindberg, and Zadd [5] also discussed the

coupling of manipulator motion and vehicle motion. Miyazaki, Masutani, and Arimoto [6] discussed a sensor

feedback scheme using the transposed generalized Jacobian matrix.

Both of the linear and angular momentum conservations have been used to eliminate dependent variables/4]

[6]. Although both of them are represented by equations of velocities, the linear one can be exhibited by the
motion of the center of mass of the total system, which is represented by the equations of positions not of

velocities. This implies that the linear momentum conservation is integrable and hence a holonomic constraint.

On the other hand, the angular momentum conservation cannot be represented by an integrated form, which

means that it is a nonholonomic constraint.

Suppose an n d.o.f, manipulator on a vehicle, the motion of th- _endeffector is describe_ by n+6 variables, n
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of the manipulator and 6 of the vehicle. By eliminating holonomic constraint of linear momentum conservation,

the total system is formulated as a nonholonomic system of n+3 variables including 3 dependent variables.

Although only n variables out of n+3 can be independently controlled, with an appropriate path planning
scheme it would possible to converge all of n+3 variables to a desired values due to the nonholonomic mechanical

structure. A similar situation is experienced in our daily life. Although an automobile has two independent

variables to control, that is, wheel rotation and steering, it can be parked at an arbitrary place with an arbitrarY
orientation in two dimensional space. This can be done because it is a nonholonomic system.

To locate the manipulator endeffector at a desired point with a desired orientation, even a vehicle with a

6 d.o.f, manipulator has redundancy because a variety of vehicle orientation can be chosen at the final time.

This kind of nonholonomic redundancy would be utilized (1) when the extended Jacobian control results in an

infeasible motion due to the physical joint limitation, (2) when the system requires more degrees of freedom

to avoid obstacles at the final location of the endeffector, (3) when the vehicle orientation needs to be changed
without using propulsion or a momentum gyro, and so on.

In this paper, we propose a path planning scheme to control both of the vehicle orientation and the
manipulator joints by actuating manipulator joints only. First, the nonholonomic mechanical structure of

space vehicle/manipulator system is shown. Second, a path planning scheme for nonholonomic systems is

proposed using Lyapunov functions. Since the planning scheme is given in a general form, it can be applied to
other many nonholonomic planning problems, such as the path planning of 2 d.o.f, vehicles for 3 d.o.f, motion

in a plane, planning of contact point motion of multifingered hands with spherical rolling contacts, and so on.

2. ANGULAR MOMENTUM CONSERVATION AS

NONHOLONOMIC CONSTRAINT

2.1 Nomenclature

frame I

frame V

frame B

frame E

frame K

rnk

Irk E R 3

Brk E R 3

lWk E R 3

k I k • R 3x3

_I_ E R 3×3

01 • R 6

02 • R n

_AB • R _×3

:Ak • R 3x3

J2 k • R 3×n

Ei • R i×i

_,fl,7

Inertia frame.

Vehicle frame.

Manipulator base frame

Manipulator endeffector frame

k-th body frame, k-th link frame of manipulator for k = 1,.--, n. n-th link frame
is identical to the manipulator endeffector frame. Vehicle frame for k = 0.

Mass of the k-th body (kg). 0-th body is the vehicle, k-th body (k _> 1) is the k-th link of
the manipulator.

Position vector from the origin of the inertia frame to the center of mass of k-th body
represented in theinertia frame. (m)

Position vector from the origin of the manipulator base frame to the center of mass of k-th

body represented in the manipulator base frame.(m)

Angular velocity of the k-th body in the inertia frame.(rad/s)

Inertia matrix of the k-th body about its center of mass in the k-th body frame. (kgm 2)

Inertia matrix of the k-th body about its center of mass in the inertia frame. (kgm 2)

Linear velocity of the center of mass and angular velocity of the vehicle in inertia frame.

(re�s, tad/s)

Joint variables (ql,"', qn) of the manipulator. (tad)
Rotation matrix from the inertia frame to the manipulator base frame.

Rotation matrix from the inertia frame to thek-th body frame (vehicle frame for k = 0, k-th
link frame of the manipulator for k = 1,--., n).

Jacobian matrix of the position of the center of mass of k-th body (k = l, • • •, n) in the

manipulator base frame. (m)
i x i identity matrix.

z-y-x Euler angles.
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2.2 Kinematics of Space Vehicle/Manipulator System

The basic equations of kinematics of space vehicle/manipulator system is developed in this subsection.

Fig. 1 shows a model of space vehicle/manipulator system. Five kinds of frames, the inertia frame, the vehicle

frame, the manipulator base frame, the k-th link frames, and the manipulator endeffector frame, are represented

by I, V, B, K, and g respectively. The link frames of the manipulator are defined by Denavit-Hartenberg

convention [7]. The vehicle frame is assumed to be fixed at the center of mass of the vehicle.

Supposing zero linear and angular momentum at initial time, the linear and angular momentum conser-

vations are represented by

f_

_ '*_ = 0, (1)
k=O

n

('z.',.,_+.,_',', ×'÷_)=o,
k:O

The vehicle and manipulator motions are described by the following 01 and 02.

(2)

(3)

02 -_-(q').
qn

(4)

z_, is computed by

'÷k=1÷o+%0×('-k - %) +'ABJ##:
= (E3 -'rto. ) 01+ 'AB J# 02

(5)

where ZRo_ and Zrok are defined by

IP_ok =
0 --lrokz Iroky )

lrok z 0 --l rok z

--Irok y Irok z 0

(6)

lrok _ )
17, k _17. 0 : I lroky

\ I rok z

(7)

On the other hand, Zl_Zw_ is given by

1Ik 1wk = _A_ _Ik IA_T lwk (8)

(Ol)OIt.Ok k

= 1Wo+_=_A_ @

fi:_r k = 0

for k = 1, ...ln

(9)

By substituting eqs. (5) and (8) into eqs. (1) and (2) and summarizing them in a matrix form, the linear and

angular momentum conservations are represented by the following equation.

H101 + H202 = 0 (10)

183



)_=0 I Ak k Ik I AkT - _=0 mk I R_ I Rok
(11)

where

EL-0 r-k'AB J_ )H2 = \_,'_=omktRktAnJ_ + P

IR k =
I 0 --lrkz Irky )

Irk z 0 --Irk x

--lrky Irkx 0

(12)

(13)

P=(P1 P_ ... P.)

In eq. (13), Irks, 1rky and _rkz are x, y and z components of irk respectively.

The relationship between the endeffector, 01 and 02 is described in the following form.

h = J_bl + &0_

where

(14)

(15)

h /' t/'E

J1 and ,/2 are the pure geometrical Jacobian matrices which do not take account of the momentum conserva-

tions. In eq. (10),/'/1 E R 6×6 is always nonsingular. Therefore, eq. (10) is identical to

01 = -H_-_H2b, (16)

Substituting eq. (16) into eq. (15) offers

_t=(-JIH1-lH2+J2) 02 (17)

Umetani and Yoshida [4] named the coefficient matrix of the above equation the generalized Jacobian

matrix. In this derivation, the momentum conservations of eq. (10) are used as constraints equations and
eliminated in the final equation.

2.3 Holonomic and Nonholonomic Constraints

Eq. (1) can be analytically integrated as follows:

mk l_'k dt = mk Irk (t) - E mk Irk (0)
0 k=0 k=0 k=0

=0

The above equation physically means that the total center of mass of the system does not move.

computed by

(18)

lr_ is
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Irk = IAB Br} + Iro (19)

where IAB is a function of the vehicle orientation only. Brk is a function of the joint variables of the

manipulator only. Knowing the vehicle orientation, the joint variables, and the initial position of the total

center of mass, the vehicle position xr} can be obtained by substituting eq. (19) into eq. (18). Therefore, the
linear momentum conservation is considered a holonomic constraint because it is integrable.

Although eqs. (1) and (2) are both represented by velocities, eq. (2) can not be analytically integrated and,

therefore, it is a nonholonomic constraint. The physical characteristic of nonholonomic constraint is exhibited

by the fact that even if the manipulator joints return to the initial joint variables after a sequence of motion,
the vehicle orientation may not be the same as its initial value. The vehicle orientation can be eliminated

as a dependent variable as we did in deriving eq. (17). In next .section, we propose to control both of the

independent and dependent variables by controlling the independent ones only.
The basic system equation is obtained by taking the vehicle orientation and 02 as the state variable and

the 02 as the input variable. First, the coefficient matrix of eq. (16) is divided into a top 3 x n matrix and a

bottom 3 x n matrix as follows:

The state variable z and the input variable tt are defined by

(20)

821

u=O e n" (22)

aft, and 7 are the z-y-x Euler angles of the vehicle with respect to the inertia frame. The relationship between

the Euler angles and xw0 is given by

(23)

where

.._ cosa sinct cos _3}
0 -sin_ ]

The system equation becomes

==Ku (24)

where

{'N -I H_ '_ R{.+3)×. (25)
K=k, E. ]e

2.4 Nonholonomic Redundancy

The system represented by eq. (25) has a unique feature in the fact that the input variable may not be
found even if a smooth desired trajectory of _g is provided because it has less number of input variable. It is

impossible to plan a feasible trajectory without taking full account of the dynamics of eq. (25). This is a general
feature of nonholonomic mechanical systems. An automobile can move around in two dimensional space and
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orientitself if we drive it properly, although it has only two variables to control, that is, wheel rotation and
steering. In this case, the state variables are three and the inputs are two.

By appropriately planning the trajectory, the desired final values of the vehicle orientation and the ma-

nipulator joint variables could be reached. To locate the manipulator endeffector at a desired point with a
desired orientation, even a vehicle with a 6 d.o.f, manipulator has redundancy because a variety of vehicle
orientation can be chosen at the final time. The choice of the final vehicle orientation can be done based on the

conventional control or planning schemes of kinematically redundant manipulators [8, 9, 10]. It is a problem
to find an appropriate configuration among the configurations attained by 3 d.o.f, selfmotion.

The nonholonomic redundancy would be utilized (1) when the extended Jacobian control results in an

infeasible motion due to the physical joint limitation, (2) when the system requires more degrees of freedom

to avoid obstacles at the final location of the endeffector, (3) when the vehicle orientation needs to be changed
without using propulsion or a momentum gyro, and so on.

3. PATH PLANNING USING LYAPUNOV FUNCTIONS

3.1 First Lyapunov function

In this section, the input variable u is synthesized based on the Lyapunov's direct method [11] so that the
vehicle orientation and the joint variables should converge to their desired values.

The following function is chosen as a candidate of the Lyapunov function.

101 = 1AzTAAz (26)

AZ = Zd -- Z (27)

where A is a positive definite constant matrix. Vl = 0 is attained only when _d = x. The time derivative of
vl is computed as follows:

i_1 = --A_TA_ = -AzTAKu

where eq. (24) was substituted. Now, choosing the input variable as

U 1 = (AK) T AZ,

the rate of change of the Lyapunov function becomes

(28)

(29)

_,_= -ur_ u_ < o (30)

If the equality of eq. (30) holds only when Xd = _, Lyapunov's theorem [11] can conclude its global

stability. However, eq. (30) is not the case. t)_ becomes zero when A_ is in the null space of (AK) T, which
is a three dimensional space.

3.2 Avoiding Null Space of (AK) T

The LaSalle's theorem [12] says that the state variable _: converges to _d if _ = _ is the unique entry

of the maximum invariant set. When A_ is at the null space of (AK) T and it stays within the null space

thereafter, all the points on this trajectory are the entries of the maximum invariant set. In this subsection,

the unit vector is chosen such that A_ should avoid the null space as much as possible and get out of the null
space if it is there.

To take account of the null space of (AK) w we introduce the second Lyapunov function v2 such that

(I-
t_2 ---- AflsTAx + el (31)

where el is a positive small constant, v2 becomes equal to zero when AW _-- 0.
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Since

AzT(I-(AK)(AK)#)Ax

=II(i- (AK)(AK)#) II2,
the numerator of eq. (31) implies the squared Euclidean norm of the orthogonal projection of AZ on the null

space of (AK) T. If we define _ such that

]l (1- (AK) (AK) #) Az ]1 _ (33)
cos _ = IIz_z II , 0 < _ <

means an angle between Ax and the hyperplane of the null space of (AK) T, and can be considered as a
distance of Az from the null space as shown in Fig. 2. For ¢1 = 0 the second Lyapunov function becomes

_r (34)v2 = cos_ ,_ 0 <__ <_"_.

In eq. (31), ¢1 allows for v2 not to take extreme values and to be defined at AZ. In eq. (34) v2 is monotonously
reduced as _bgrows, and takes zero at _b= _/2, which means the faxthest point from the null space.

Taking the derivative of v2 with respect to time, we have

Ifwe chooseu2 suchas

_t)2 .iJ2= -_-_z = K,
(35)

(Ors'_T (36)
u2=-K +rkoz/ '

and use it as u, then T)+_< 0, and us works to avoid the null space by driving toward + = +/2.

We integrate Ul and u2 in a hierarchical manner such that

lg = klU 1 4" kS (I -- 1[/'1Ul #) _2 (37)

where Ul # is the pseudoinverse of ul, kl and k2 are positive constants. Since (I - ulul #) u2 is the orthogonal
projection of ua onto the hyperplane that is perpendicular to ul, the first and second terms are mutually

perpendicular. This results in following properties of eq. (37).
The second term of eq.(37) has no effect on the convergence speed of Vlt because substituting eq. (37)

into eq. (28) we have

/J1 : --ulT{Ul "[-41 (1 - Ul u#) 1/,'_} : --ulTUl (38)

# T
whereul T(1-ulul #) = ('U,l-U1ul Ul) =0isused.

Let's consider the effect of the second term of vs. Substituti_g the second term of eq. (37) into eq. (35)

along with eq. (36), we obtain

_OVP+K (l _ ulu+,#) K+r f Ov'/'_ 'r
t)2= Oz _,OZ ] (39)

---Ov"Ko,z (1--UlUI#)T (I--u'uI#)KT X,.(Ov'_"ro+} < 0

t The convergencespeed_)xisthesame forboth ul and u ofeq.(37)onlyinlocalsense.Sincetheglobal

trajectoryofx variesdependingon thechoiceoftheinput,theglobalconvergencespeedwould be different.
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_)2 becomes zero only when (I- UlUl #) K r (Ov2/Ox) r = 0. Otherwise _)2 is always negative. This means

that the second term of eq. (37) tries to reduce v2 although the total u of eq. (37) does not be guarantee the
negativeness of v2 because of the effect of the first term.

To summarize eqs. (28),(29),(35),and (36), the proposed hierarchical Lyapunov function approach can be
represented as follows

u = kl ul + k2 (I - ulul #) u2 (40)

___KT T
_,0z/ ' for i= 1,2 (41)

It should be noted that if we consider vi as the ith manipulation variable, (avi/az)g as its Jacobian
matrix with respect to the input variable u, then eq. (40) is identical to the task-priority approach developed

for kinematically redundant manipulators[10/, having

=_ KKT iOv, T
_,_gz ] ' for i = 1,2 (42)

as the desired trajectories of the manipulation variables. This approach cannot guarantee that x = _vd is the
unique entry of the maximum invariant set [12] and, therefore, the trajectory may halt at some point in the null

space of (AK) T. However, if the second Lyapunov function can successfully avoid the null space of (AK) T,
z converges to _a.

4. CONCLUSION

A new insight of the mechanical structure of space vehicle/manipulator systems was given. By utilizing
the nonholonomic structure, not only the manipulator joints, but also vehicle orientation can be controlled

only by actuating the joint variables, although both of the vehicle motion and the manipulator joints cannot be
controlled independently. Therefore, it is essential to plan a feasible trajectory. A nonlinear control scheme was

synthesized using Lyapunov's direct method. This scheme can be used not only for real-time control, but for

planning of a feasible motions of vehicle and manipulator. To verify the effectiveness of the proposed approach,
numerical simulation is currently being undertaken at the Center for Robotic Systems in Microelectronics,
University of California, Santa Barbara.
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Fig 1. Five Coordinate Frames for the Space
Vehicle / Manipulator System.
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'XX

Axe! I- (AKXAK)#lax
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n {(AK) }
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n {(AK) } :the nullspaceof (AK)

.I. T T

n {(AK) } : the orthogonal complement space ofn {(AK) }

Fig 2. Physical Meaning of the 2nd Lyapunov
Function and Definition of Angle # .
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